### aggregate-functions

#### Complexity asymptotic relation (theta, Big O, little o, Big Omega, little omega) between functions

```Let's define:
Tower(1) of n is: n.
Tower(2) of n is: n^n (= power(n,n)).
Tower(10) of n is: n^n^n^n^n^n^n^n^n^n.
And also given two functions:
f(n) = [Tower(logn n) of n] = n^n^n^n^n^n^....^n (= log n times "height of tower").
g(n) = [Tower(n) of log n] = log(n)^log(n)^....^log(n) (= n times "height of tower").
Three questions:
How are functions f(n)/g(n) related each other asymptotically (n-->infinity),
in terms of: theta, Big O, little o, Big Omega, little omega ?
Please describe exact way of solution and not only eventual result.
Does base of log (i.e.: 0.5, 2, 10, log n, or n) effect the result ?
If no - why ?
If yes - how ?
I'd like to know whether in any real (even if hypotetic) application there complexity performance looks similar to f(n) or g(n) above. Please give case description - if such exist.
P.S.
I tried to substitute: log n = a, therefore: n = 2^a or 10^a.
And got confused of counting height of received "towers".
```
```I won't provide you a solution, because you have to work on your homework, but maybe there are other people interested about some hints.
1) Mathematics:
log(a^x) = x*log(a)
2) Mathematics:
logx(y) = log2(y) / log2(x) = log10(y) / log10(x)
of course: if x is constant => log2(x) and log10(x) are constants
3) recursive + stop condition```

### Resources

Mobile Apps Dev
Database Users
javascript
java
csharp
php
android
MS Developer
developer works
python
ios
c
html
jquery
RDBMS discuss
Cloud Virtualization